

SIXTH EDITION
ELECTRICAL AND
ELECTRONIC PRINCIPLES AND TECHNOLOGY JOHN BIRD

Electrical and Electronic Principles and Technology

This practical resource introduces electrical and electronic principles and technology covering theory through detailed examples, enabling students to develop a sound understanding of the knowledge required by technicians in fields such as electrical engineering, electronics and telecommunications. No previous background in engineering is assumed, making this an ideal text for vocational courses at Levels 2 and 3, foundation degrees and introductory courses for undergraduates.

John Bird, BSc (Hons), CEng, CSci, CMath, FITE, FIMA, FCollT, is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently he has combined freelance lecturing and examining, and is the author of over 130 textbooks on engineering and mathematical subjects with worldwide sales of over one million copies. He is currently lecturing at the Defence School of Marine and Air Engineering in the Defence College of Technical Training at HMS Sultan, Gosport, Hampshire, UK.

Electrical and Electronic Principles and Technology

Sixth edition

John Bird

```
Sixth edition published 2017
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN
and by Routledge
7 1 1 \text { Third Avenue, New York, NY 10017}
```

Routledge is an imprint of the Taylor \& Francis Group, an informa business
© 2017 John Bird
The right of John Bird to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Newnes 2000
Fifth edition published by Routledge 2014
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
Library of Congress Cataloging in Publication Data
Names: Bird, J. O., author.
Title: Electrical and electronic principles and technology / John Bird.
Description: 6th ed. | Boca Raton : Taylor \& Francis, a CRC title, part of the Taylor \& Francis imprint, a member of the Taylor \& Francis Group, the academic division of T\&F Informa, plc, [2017] | Includes index.
Identifiers: LCCN 2016038058| ISBN 9781138673526 | ISBN 9781315561875
Subjects: LCSH: Electrical engineering. Classification: LCC TK146 .B57 2017 | DDC 621.3-dc23
LC record available at https://lcen.loc.gov/2016038058
ISBN: 978-1-138-67352-6 (pbk)
ISBN: 978-1-315-56187-5 (ebk)
Typeset in Times by
Servis Filmsetting Ltd, Stockport, Cheshire
Visit the companion website: www.routledge.com/cw/bird

Contents

Preface x
Part 1 Revision of Some Basic Mathematics 1
1 Some mathematics revision 3
1.1 Use of calculator and evaluating formulae 3
1.2 Fractions 6
1.3 Percentages 8
1.4 Ratio and proportion 10
1.5 Laws of indices 13
1.6 Brackets 15
1.7 Solving simple equations 16
1.8 Transposing formulae 18
1.9 Solving simultaneous equations 20
2 Further mathematics revision 22
2.1 Radians and degrees 23
2.2 Measurement of angles 24
2.3 Trigonometry revision 25
2.4 Logarithms and exponentials 27
2.5 Straight line graphs 32
2.6 Gradients, intercepts and equation of a graph 3 34
2.7 Practical straight line graphs 36
2.8 Calculating areas of common shapes 38
Formulae for revision of some basic mathematics 44
Multiple choice questions on chapters 1 and 2 46
Part 2 Basic Electrical and Electronic Engineering Principles 53
3 Units associated with basic electrical quantities 55
3.1 SI units 55
3.2 Charge 56
3.3 Force 57
3.4 Work 57
3.5 Power 58
3.6 Electrical potential and e.m.f. 59
3.7 Resistance and conductance 59
3.8 Electrical power and energy 60
3.9 Summary of terms, units and their symbols 61
4 An introduction to electric circuits 63
4.1 Electrical/electronic system block diagrams 64
4.2 Standard symbols for electrical components 65
4.3 Electric current and quantity of electricity 65
4.4 Potential difference and resistance 66
4.5 Basic electrical measuring instruments 66
4.6 Linear and non-linear devices 67
4.7 Ohm's law 67
4.8 Multiples and sub-multiples 67
4.9 Conductors and insulators 69
4.10 Electrical power and energy 69
4.11 Main effects of electric current 72
4.12 Fuses 73
4.13 Insulation and the dangers of constant high current flow 73
5 Resistance variation 76
5.1 Resistor construction 76
5.2 Resistance and resistivity 77
5.3 Temperature coefficient of resistance 79
5.4 Resistor colour coding and ohmic values 81
$6 \quad$ Batteries and alternative sources of energy 85
6.1 Introduction to batteries 86
6.2 Some chemical effects of electricity 86
6.3 The simple cell 87
6.4 Corrosion 88
6.5 E.m.f. and internal resistance of a cell 88
6.6 Primary cells 90
6.7 Secondary cells 91
6.8 Lithium-ion batteries 93
6.9 Cell capacity 96
6.10 Safe disposal of batteries 96
6.11 Fuel cells 96
6.12 Alternative and renewable energy sources 97
6.13 Solar energy 98
Revision Test 1 103
$7 \quad$ Series and parallel networks 104
7.1 Series circuits 104
7.2 Potential divider 106
7.3 Parallel networks 107
7.4 Current division 110
7.5 Loading effect 114
7.6 Potentiometers and rheostats 115
7.7 Relative and absolute voltages 117
7.8 Earth potential and short circuits 119
7.9 Wiring lamps in series and in parallel 119
8 Capacitors and capacitance 122
8.1 Introduction to capacitors 123
8.2 Electrostatic field 123
8.3 Electric field strength 124
8.4 Capacitance 124
8.5 Capacitors 125
8.6 Electric flux density 126
8.7 Permittivity 126
8.8 The parallel plate capacitor 128
8.9 Capacitors connected in parallel and series 129
8.10 Dielectric strength 133
8.11 Energy stored in capacitors 134
8.12 Practical types of capacitor 135
8.13 Supercapacitors 137
8.14 Discharging capacitors 138
9 Magnetic circuits 141
9.1 Introduction to magnetism and magnetic circuits 142
9.2 Magnetic fields 143
9.3 Magnetic flux and flux density 144
9.4 Magnetomotive force and magnetic field strength 144
9.5 Permeability and B-H curves 145
9.6 Reluctance 148
9.7 Composite series magnetic circuits 149
9.8 Comparison between electrical and magnetic quantities 152
9.9 Hysteresis and hysteresis loss 153
Revision Test 2 156
10 Electromagnetism 157
10.1 Magnetic field due to an electric current 158
10.2 Electromagnets 159
10.3 Force on a current-carrying conductor 161
10.4 Principle of operation of a simple d.c. motor 164
10.5 Principle of operation of a moving-coil instrument 164
10.6 Force on a charge 165
11 Electromagnetic induction 168
11.1 Introduction to electromagnetic induction 169
11.2 Laws of electromagnetic induction 170
11.3 Rotation of a loop in a magnetic field 173
11.4 Inductance 174
11.5 Inductors 176
11.6 Energy stored 176
11.7 Inductance of a coil 177
11.8 Mutual inductance 179
12 Electrical measuring instruments and measurements 183
12.1 Introduction 184
12.2 Analogue instruments 184
12.3 Shunts and multipliers 184
12.4 Electronic instruments 186
12.5 The ohmmeter 186
12.6 Multimeters 187
12.7 Wattmeters 187
12.8 Instrument 'loading' effect 187
12.9 The oscilloscope 189
12.10 Virtual test and measuring instruments 194
12.11 Virtual digital storage oscilloscopes 195
12.12 Waveform harmonics 198
12.13 Logarithmic ratios 199
12.14 Null method of measurement 202
12.15 Wheatstone bridge 202
12.16 D.c. potentiometer 203
12.17 A.c. bridges 204
12.18 Q-meter 205
12.19 Measurement errors 206
13 Semiconductor diodes 211
13.1 Types of material 212
13.2 Semiconductor materials 212
13.3 Conduction in semiconductor materials 214
13.4 The $\mathrm{p}-\mathrm{n}$ junction 214
13.5 Forward and reverse bias 215
13.6 Semiconductor diodes 218
13.7 Characteristics and maximum ratings 219
13.8 Rectification 219
13.9 Zener diodes 220
13.10 Silicon controlled rectifiers 221
13.11 Light emitting diodes 222
13.12 Varactor diodes 222
13.13 Schottky diodes 222
14 Transistors 226
14.1 Transistor classification 227
14.2 Bipolar junction transistors (BJTs) 227
14.3 Transistor action 228
14.4 Leakage current 229
14.5 Bias and current flow 230
14.6 Transistor operating configurations 230
14.7 Bipolar transistor characteristics 230
14.8 Transistor parameters 232
14.9 Current gain 234
14.10 Typical BJT characteristics and maximum ratings 234
14.11 Field effect transistors 235
14.12 Field effect transistor characteristics 236
14.13 Typical FET characteristics and maximum ratings 238
14.14 Transistor amplifiers 238
14.15 Load lines 240
Revision Test 3 247
Formulae for basic electrical and electronic principles 248
Part 3 Further Electrical and Electronic Principles 249
15 D.c. circuit theory 251
15.1 Introduction 251
15.2 Kirchhoff's laws 252
15.3 The superposition theorem 256
15.4 General d.c. circuit theory 259
15.5 Thévenin's theorem 261
15.6 Constant-current source 266
15.7 Norton's theorem 266
15.8 Thévenin and Norton equivalent networks 269
15.9 Maximum power transfer theorem 272
16 Alternating voltages and currents 278
16.1 Introduction 279
16.2 The a.c. generator 279
16.3 Waveforms 280
16.4 A.c. values 281
16.5 Electrical safety - insulation and fuses 285
16.6 The equation of a sinusoidal waveform 285
16.7 Combination of waveforms 287
16.8 Rectification 291
16.9 Smoothing of the rectified output waveform 292
Revision Test 4295
17 Single-phase series a.c. circuits 296
17.1 Purely resistive a.c. circuit 297
17.2 Purely inductive a.c. circuit 297
17.3 Purely capacitive a.c. circuit 298
17.4 $R-L$ series a.c. circuit 299
17.5 $R-C$ series a.c. circuit 303
17.6 $R-L-C$ series a.c. circuit 304
17.7 Series resonance 308
17.8 Q-factor 309
17.9 Bandwidth and selectivity 310
17.10 Power in a.c. circuits 311
17.11 Power triangle and power factor 312
18 Single-phase parallel a.c. circuits 318
18.1 Introduction 319
18.2 $R-L$ parallel a.c. circuit 319
$18.3 \quad R-C$ parallel a.c. circuit 320
18.4 $L-C$ parallel circuit 321
18.5 $L R-C$ parallel a.c. circuit 323
18.6 Parallel resonance and Q-factor 326
18.7 Power factor improvement 330
19 Filter networks 337
19.1 Introduction 337
19.2 Two-port networks and characteristic impedance 338
19.3 Low-pass filters 338
19.4 High-pass filters 341
19.5 Band-pass filters 345
19.6 Band-stop filters 346
20 D.c. transients 349
20.1 Introduction 350
20.2 Charging a capacitor 350
20.3 Time constant for a $C-R$ circuit 351
20.4 Transient curves for a $C-R$ circuit 351
20.5 Discharging a capacitor 355
20.6 Camera flash 357
20.7 Current growth in an $L-R$ circuit 357
20.8 Time constant for an $L-R$ circuit 358
20.9 Transient curves for an $L-R$ circuit 358
20.10 Current decay in an $L-R$ circuit 360
20.11 Switching inductive circuits 362
20.12 The effects of time constant on a rectangular waveform 362
21 Operational amplifiers 366
21.1 Introduction to operational amplifiers 367
21.2 Some op amp parameters 368
21.3 Op amp inverting amplifier 369
21.4 Op amp non-inverting amplifier 372
21.5 Op amp voltage-follower 372
21.6 Op amp summing amplifier 373
21.7 Op amp voltage comparator 374
21.8 Op amp integrator 375
21.9 Op amp differential amplifier 375
21.10 Digital to analogue (D/A) conversion 377
21.11 Analogue to digital (A/D) conversion 379
Revision Test 5 382
Formulae for further electrical and electronic principles 383
Part 4 Electrical Power Technology 385
22 Ways of generating electricity - the present and the future 387
22.1 Introduction 388
22.2 Generating electrical power using coal 388
22.3 Generating electrical power using oil 390
22.4 Generating electrical power using natural gas 391
22.5 Generating electrical power using nuclear energy 392
22.6 Generating electrical power using hydro power 393
22.7 Generating electrical power using pumped storage 394
22.8 Generating electrical power using wind 395
22.9 Generating electrical power using tidal power 395
22.10 Generating electrical power using biomass 397
22.11 Generating electrical power using solar energy 397
22.12 Harnessing the power of wind, tide and sun on an 'energy island' - a future possibility? 398
23 Three-phase systems 401
23.1 Introduction 402
23.2 Three-phase supply 402
23.3 Star connection 402
23.4 Delta connection 406
23.5 Power in three-phase systems 407
23.6 Measurement of power in three-phase systems 409
23.7 Comparison of star and delta connections 414
23.8 Advantages of three-phase systems 414
24 Transformers 417
24.1 Introduction 418
24.2 Transformer principle of operation 418
24.3 Transformer no-load phasor diagram 421
24.4 E.m.f. equation of a transformer 422
24.5 Transformer on-load phasor diagram 424
24.6 Transformer construction 425
24.7 Equivalent circuit of a transformer 426
24.8 Regulation of a transformer 428
24.9 Transformer losses and efficiency 428
24.10 Resistance matching 431
24.11 Auto transformers 433
24.12 Isolating transformers 435
24.13 Three-phase transformers 435
24.14 Current transformers 437
24.15 Voltage transformers 438
Revision Test 6 441
25 D.c. machines 442
25.1 Introduction 443
25.2 The action of a commutator 443
25.3 D.c. machine construction 444
25.4 Shunt, series and compound windings 444
25.5 E.m.f. generated in an armature winding 445
25.6 D.c. generators 447
25.7 Types of d.c. generator and their characteristics 447
25.8 D.c. machine losses 451
25.9 Efficiency of a d.c. generator 451
25.10 D.c. motors 452
25.11 Torque of a d.c. motor 453
25.12 Types of d.c. motor and their characteristics 455
25.13 The efficiency of a d.c. motor 458
25.14 D.c. motor starter 461
25.15 Speed control of d.c. motors 461
25.16 Motor cooling 464
26 Three-phase induction motors 467
26.1 Introduction 468
26.2 Production of a rotating magnetic field 468
26.3 Synchronous speed 470
26.4 Construction of a three-phase induction motor 471
26.5 Principle of operation of a three-phase induction motor 471
26.6 Slip 472
26.7 Rotor e.m.f. and frequency 473
26.8 Rotor impedance and current 474
26.9 Rotor copper loss 474
26.10 Induction motor losses and efficiency 475
26.11 Torque equation for an induction motor 476
26.12 Induction motor torque-speed characteristics 479
26.13 Starting methods for induction motors 480
26.14 Advantages of squirrel-cage induction motors 480
26.15 Advantages of wound rotor induction motors 481
26.16 Double cage induction motor 481
26.17 Uses of three-phase induction motors 482
Revision Test 7 485
Formulae for electrical power technology 486
Part 5 Laboratory Experiments 487
27 Some practical laboratory experiments 489
27.1 Ohm's law 490
27.2 Series-parallel d.c. circuit 491
27.3 Superposition theorem 492
27.4 Thévenin's theorem 494
27.5 Use of an oscilloscope to measure voltage, frequency and phase 496
27.6 Use of an oscilloscope with a bridge rectifier 497
27.7 Measurement of the inductance of a coil 498
27.8 Series a.c. circuit and resonance 499
27.9 Parallel a.c. circuit and resonance 501
27.10 Charging and discharging a capacitor 503
Answers to Practice Exercises 504
Index 521
dex

Preface

Electrical and Electronic Principles and Technology, 6 th Edition introduces the principles which describe the operation of d.c. and a.c. circuits, covering both steady and transient states, and applies these principles to filter networks, operational amplifiers, three-phase supplies, transformers, d.c. machines and three-phase induction motors.

In this new sixth edition, new material added includes some mathematics revision needed for electrical and electronic principles, ways of generating electricity the present and the future (including more on renewable energy), more on lithium-ion batteries and solar energy, along with other minor modifications.

This sixth edition of the textbook provides coverage of the following latest syllabuses:
(i) 'Electrical and Electronic Principles' (BTEC Level 3 Nationals Specification in Engineering, Unit 6) - see chapters 3-12, 13 (part), 14 (part), 16, 17 (part), 18 (part), 20 (part), 24 (part), 25 (part).
(ii) 'Further Electrical Principles' (BTEC National Certificate and National Diploma, Unit 64) - see chapters 15, 17-20, 23, 25, 26.
(iii) Parts of the following BTEC National syllabuses: Electrical Technology (Unit 51), Principles and operation of three-phase systems (Unit 62) and Three-phase motors and drives (Unit 63).
(iv) Various parts of City \& Guilds Technician Certificate/Diploma in Electrical and Electronic Engineering/Telecommunication Systems.
(v) 'Electrical and Electronic Principles' (EAL Advanced Diploma in Engineering and Technology).
(vi) Any introductory/Access/Foundation course involving Electrical and Electronic Engineering Principles.

The text is set out in five main sections:
Part 1, comprising chapters 1 and 2, involves Revision of Some Basic Mathematics needed for Electrical and Electronic Principles.

Part 2, comprising chapters 3 to 14, involves essential Basic Electrical and Electronic Engineering Principles, with chapters on electrical units and quantities, introduction to electric circuits, resistance variation, chemical effects of electricity, series and parallel networks, capacitors and capacitance, magnetic circuits, electromagnetism, electromagnetic induction, electrical measuring instruments and measurements, semiconductors diodes and transistors.

Part 3, comprising chapters 15 to 21, involves Further Electrical and Electronic Principles, with chapters on d.c. circuit theory, alternating voltages and currents, single-phase series and parallel networks, filter networks, d.c. transients and operational amplifiers.

Part 4, comprising chapters 22 to 26, involves Electrical Power Technology, with chapters on ways of generating electricity - the present and the future, three-phase systems, transformers, d.c. machines and three-phase induction motors.
Part 5, comprising chapter 27, details 10 practical laboratory experiments.

Each topic considered in the text is presented in a way that assumes in the reader little previous knowledge of that topic. Theory is introduced in each chapter by a reasonably brief outline of essential information, definitions, formulae, procedures, etc. The theory is kept to a minimum, for problem solving is extensively used to establish and exemplify the theory. It is intended that readers will gain real understanding through seeing problems solved and then through solving similar problems themselves.

Electrical and Electronic Principles and Technology, 6th Edition contains some $\mathbf{5 0 0}$ worked problems to
aid understanding. Also included are over 500 short answer questions, the answers for which can be determined from the preceding material in that particular chapter, together with $\mathbf{4 0 4}$ multi-choice questions, and over $\mathbf{8 5 0}$ further questions, arranged in $\mathbf{1 7 2}$ Practice Exercises, all with answers at the back of the book. The Practice Exercises appear at regular intervals - every 3 or 4 pages - throughout the text. 622 line diagrams further enhance the understanding of the theory. All of the problems - multi-choice, short answer and further questions - mirror practical situations found in electrical and electronic engineering.

At regular intervals throughout the text are seven Revision Tests to check understanding. For example, Revision Test 1 covers material contained in chapters 3 to 6 , Revision Test 2 covers the material contained in chapters 7 to 9 , and so on. These Revision Tests do not have answers given since it is envisaged that lecturers/instructors could set the Tests for students to attempt as part of their course structure. Lecturers/instructors may access a free Internet download of full solutions of the Revision Tests in an Instructor's Manual - see below.

I am once again grateful to Mike Tooley for his help and advice in the work involved in preparing this sixth edition of the text

A list of relevant formulae are included at the end of each of the first four parts of the book.
'Learning by Example' is at the heart of Electrical and Electronic Principles and Technology, 6th Edition.

JOHN BIRD

Royal Naval Defence College of Marine and Air Engineering, HMS Sultan, formerly University of Portsmouth and Highbury College, Portsmouth

John Bird is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently, he has combined freelance lecturing at the University of Portsmouth, with examiner responsibilities for Advanced Mathematics with City and Guilds, and examining for International Baccalaureat. He is the author of some 130 textbooks on engineering and mathematical subjects with worldwide sales of over one million copies. He is currently lecturing at the Defence School of Marine and Air Engineering in the Defence College of Technical Training at HMS Sultan, Gosport, Hampshire, UK.

Free Web downloads

The following support material is available from www.routledge.com/cw/bird

For Students:

1. Full solutions to all $\mathbf{8 5 0}$ further questions in the Practice Exercises
2. A set of formulae for each of the first four parts of the text
3. Multiple choice questions sheets
4. Information on 29 Engineers/Scientists mentioned in the text

For Lecturers/Instructors:

1. Full solutions to all 850 further questions in the Practice Exercises
2. Full solutions and marking scheme for each of the 7 Revision Tests. Also, each test may be downloaded.
3. Lesson Plans and revision material. Typical 30-week lesson plans for 'Electrical and Electronic Principles', Unit 6, and 'Further Electrical Principles’, Unit 64, are included, together with two practice examination question papers (with solutions) for each of the modules.
4. Laboratory Experiments. In chapter 27, 10 practical laboratory experiments are included. It maybe that tutors will want to edit these experiments to suit their own equipment/component availability.
5. A set of formulae for each of the first four parts of the text
6. Multiple choice questions sheets
7. Information on 29 Engineers/Scientists mentioned in the text
8. All 622 illustrations used in the text may be downloaded for use in PowerPoint presentations
http://taylorandfrancis.com

Part 1

Revision of Some Basic Mathematics

http://taylorandfrancis.com

Chapter 1

Some mathematics revision

Why it is important to understand: Some mathematics revision
Mathematics is a vital tool for professional and chartered engineers. It is used in electrical and electronic engineering, in mechanical and manufacturing engineering, in civil and structural engineering, in naval architecture and marine engineering and in aeronautical and rocket engineering. In these various branches of engineering, it is very often much cheaper and safer to design your artefact with the aid of mathematics - rather than through guesswork. 'Guesswork' may be reasonably satisfactory if you are designing an exactly similar artefact as one that has already proven satisfactory; however, the classification societies will usually require you to provide the calculations proving that the artefact is safe and sound. Moreover, these calculations may not be readily available to you and you may have to provide fresh calculations, to prove that your artefact is 'roadworthy'. For example, if you design a tall building or a long bridge by 'guesswork', and the building or bridge do not prove to be structurally reliable, it could cost you a fortune to rectify the deficiencies. This cost may dwarf the initial estimate you made to construct these structures, and cause you to go bankrupt. Thus, without mathematics, the prospective professional or chartered engineer is very severely disadvantaged.
Knowledge of mathematics provides the basis for all engineering.

At the end of this chapter you should be able to:

- use a calculator and evaluate formulae
- manipulate fractions
- understand and perform calculations with percentages
- appreciate ratios and direct and inverse proportion
- understand and use the laws of indices
- expand equations containing brackets
- solve simple equations
- transpose formulae
- solve simultaneous equations in two unknowns

1.1 Use of calculator and evaluating formulae

In engineering, calculations often need to be performed. For simple numbers it is useful to be able to use
mental arithmetic. However, when numbers are larger an electronic calculator needs to be used.
In engineering calculations it is essential to have a scientific notation calculator which will have all the necessary functions needed, and more. This chapter assumes you havea CASIO fx-991ES PLUS
calculator, or similar. If you can accurately use a calculator, your confidence with engineering calculations will improve.

Check that you can use a calculator in the following Practice Exercise

Practice Exercise 1 Use of calculator

 (Answers on page 504)1. Evaluate $378.37-298.651+45.64-94.562$
2. Evaluate $\frac{17.35 \times 34.27}{41.53 \div 3.76}$ correct to 3 decimal places
3. Evaluate $\frac{(4.527+3.63)}{(452.51 \div 34.75)}+0.468$ correct to 5 significant figures
4. Evaluate $52.34-\frac{(912.5 \div 41.46)}{(24.6-13.652)}$ correct to 3 decimal places
5. Evaluate $\frac{52.14 \times 0.347 \times 11.23}{19.73 \div 3.54}$ correct to 4 significant figures
6. Evaluate 6.85^{2} correct to 3 decimal places
7. Evaluate $(0.036)^{2}$ in engineering form
8. Evaluate 1.3^{3}
9. Evaluate $(0.38)^{3}$ correct to 4 decimal places
10. Evaluate $(0.018)^{3}$ in engineering form
11. Evaluate $\frac{1}{0.00725}$ correct to 1 decimal place
12. Evaluate $\frac{1}{0.065}-\frac{1}{2.341}$ correct to 4 significant figures
13. Evaluate 2.1^{4}
14. Evaluate $(0.22)^{5}$ correct to 5 significant figures in engineering form
15. Evaluate $(1.012)^{7}$ correct to 4 decimal places
16. Evaluate $1.1^{3}+2.9^{4}-4.4^{2}$ correct to 4 significant figures
17. Evaluate $\sqrt{34528}$ correct to 2 decimal places
18. Evaluate $\sqrt[3]{17}$ correct to 3 decimal places
19. Evaluate $\sqrt[6]{2451}-\sqrt[4]{46}$ correct to 3 decimal places
Express the answers to questions 20 to 23 in engineering form.
20. Evaluate $5 \times 10^{-3} \times 7 \times 10^{8}$
21. Evaluate $\frac{6 \times 10^{3} \times 14 \times 10^{-4}}{2 \times 10^{6}}$
22. Evaluate $\frac{56.43 \times 10^{-3} \times 3 \times 10^{4}}{8.349 \times 10^{3}}$ correct to 3 decimal places
23. Evaluate $\frac{99 \times 10^{5} \times 6.7 \times 10^{-3}}{36.2 \times 10^{-4}}$ correct to 4 significant figures
24. Evaluate $\frac{4}{5}-\frac{1}{3}$ as a decimal, correct to 4 decimal places
25. Evaluate $\frac{2}{3}-\frac{1}{6}+\frac{3}{7}$ as a fraction
26. Evaluate $2 \frac{5}{6}+1 \frac{5}{8}$ as a decimal, correct to 4 significant figures
27. Evaluate $5 \frac{6}{7}-3 \frac{1}{8}$ as a decimal, correct to 4 significant figures
28. Evaluate $\frac{3}{4} \times \frac{4}{5}-\frac{2}{3} \div \frac{4}{9}$ as a fraction
29. Evaluate $8 \frac{8}{9} \div 2 \frac{2}{3}$ as a mixed number
30. Evaluate $3 \frac{1}{5} \times 1 \frac{1}{3}-1 \frac{7}{10}$ as a decimal, correct to 3 decimal places
31. Evaluate $\frac{\left(4 \frac{1}{5}-1 \frac{2}{3}\right)}{\left(3 \frac{1}{4} \times 2 \frac{3}{5}\right)}-\frac{2}{9}$ as a decimal, correct to 3 significant figures
In questions 32 to 38 , evaluate correct to 4 decimal places.
32. Evaluate $\sin 67^{\circ}$
33. Evaluate $\tan 71^{\circ}$
34. Evaluate $\cos 63.74^{\circ}$
35. Evaluate $\tan 39.55^{\circ}-\sin 52.53^{\circ}$
36. Evaluate $\sin (0.437 \mathrm{rad})$
37. Evaluate $\tan (5.673 \mathrm{rad})$
38. Evaluate $\frac{\left(\sin 42.6^{\circ}\right)\left(\tan 83.2^{\circ}\right)}{\cos 13.8^{\circ}}$

In questions 39 to 45 , evaluate correct to 4 significant figures.
39. 1.59π
40. $2.7(\pi-1)$
41. $\pi^{2}(\sqrt{13}-1)$
42. $8.5 e^{-2.5}$

$$
\text { 43. } 3 e^{(2 \pi-1)} \text { 44. } \sqrt{\left[\frac{5.52 \pi}{2 e^{-2} \times \sqrt{26.73}}\right]}
$$

45. $\sqrt{\left[\frac{e^{(2-\sqrt{3})}}{\pi \times \sqrt{8.57}}\right]}$

Evaluation of formulae

The statement $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{c}$ is called a formula for y in terms of m, x and $\mathrm{c} \mathrm{y} ; \mathrm{m}, \mathrm{x}$ and c are called symbols. When given values of m, x and c we can evaluate y. There are a large number of formulae used in engineering and in this section we will insert numbers in place of symbols to evaluate engineering quantities.
Here are some practical examples. Check with your calculator that you agree with the working and answers.

Problem 1. In an electrical circuit the voltage V is given by Ohm's law, i.e. $V=I R$. Find, correct to 4 significant figures, the voltage when $I=5.36 \mathrm{~A}$ and $\mathrm{R}=14.76 \Omega$

$$
\mathrm{V}=\mathrm{IR}=\mathrm{I} \times \mathrm{R}=5.36 \times 14.76
$$

Hence, voltage $V=79.11 \mathrm{~V}$, correct to 4 significant figures

Problem 2. Velocity v is given by $\mathrm{v}=\mathrm{u}+$ at. If $u=9.54 \mathrm{~m} / \mathrm{s}, \mathrm{a}=3.67 \mathrm{~m} / \mathrm{s}^{2}$ and $\mathrm{t}=7.82 \mathrm{~s}$, find v , correct to 3 significant figures.

$$
\begin{aligned}
\mathrm{v}=\mathrm{u}+\mathrm{at} & =9.54+3.67 \times 7.82 \\
& =9.54+28.6994=38.2394
\end{aligned}
$$

Hence, velocity $v=38.2 \mathrm{~m} / \mathrm{s}$, correct to $\mathbf{3}$ significant figures

Problem 3. The area, A, of a circle is given by $\mathrm{A}=\pi \mathrm{r}^{2}$. Determine the area correct to 2 decimal places, given radius $r=5.23 \mathrm{~m}$

$$
\mathrm{A}=\pi \mathrm{r}^{2}=\pi(5.23)^{2}=\pi(27.3529)
$$

Hence, area, $\mathbf{A}=\mathbf{8 5 . 9 3} \mathrm{m}^{2}$, correct to 2 decimal places

Problem 4. Density $=\frac{\text { mass }}{\text { volume }}$. Find the density when the mass is 6.45 kg and the volume is $300 \times 10^{-6} \mathrm{~m}^{3}$.

Density $=\frac{\text { mass }}{\text { volume }}=\frac{6.45 \mathrm{~kg}}{300 \times 10^{-6} \mathrm{~m}^{3}}=\mathbf{2 1 5 0 0} \mathbf{~ k g} / \mathbf{m}^{3}$

Problem 5. The power, P watts, dissipated in an electrical circuit is given by the formula $P=\frac{V^{2}}{R}$. Evaluate the power, correct to 4 significant figures, given that $\mathrm{V}=230 \mathrm{~V}$ and $\mathrm{R}=35.63 \Omega$
$\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{(230)^{2}}{35.63}=\frac{52900}{35.63}=1484.70390 \ldots$
Press ENG and $1.48470390 . . \times 10^{3}$ appears on the screen.

Hence, power, $\mathrm{P}=\mathbf{1 4 8 5} \mathrm{W}$ or 1.485 kW correct to 4 significant figures.

Problem 6. Resistance, R Ω, varies with temperature according to the formula $\mathrm{R}=\mathrm{R}_{0}(1+\alpha \mathrm{t})$. Evaluate R , correct to 3 significant figures, given $\mathrm{R}_{0}=14.59, \alpha=0.0043$ and $\mathrm{t}=80$.

$$
\begin{aligned}
\mathrm{R}=\mathrm{R}_{0}(1+\alpha t) & =14.59[1+(0.0043)(80)] \\
& =14.59(1+0.344)=14.59(1.344)
\end{aligned}
$$

Hence, resistance, $R=19.6 \Omega$, correct to 3 significant figures

Problem 7. The current, I amperes, in an a.c. circuit is given by: $I=\frac{V}{\sqrt{\left(R^{2}+X^{2}\right)}}$
Evaluate the current, correct to 2 decimal places, when $\mathrm{V}=250 \mathrm{~V}, \mathrm{R}=25.0 \Omega$ and $\mathrm{X}=18.0 \Omega$.
$I=\frac{V}{\sqrt{\left(\mathrm{R}^{2}+\mathrm{X}^{2}\right)}}=\frac{250}{\sqrt{\left(25.0^{2}+18.0^{2}\right)}}=8.11534341 \ldots$.
Hence, current, $I=8.12 \mathrm{~A}$, correct to 2 decimal places

Now try the following Practice Exercise

Practice Exercise 2 Evaluation of formulae

 (Answers on page 504)1. The area A of a rectangle is given by the formula $\mathrm{A}=1 \times \mathrm{b}$. Evaluate the area, correct to 2 decimal places, when $1=12.4 \mathrm{~cm}$ and $\mathrm{b}=5.37 \mathrm{~cm}$.
2. The circumference C of a circle is given by the formula $\mathrm{C}=2 \pi \mathrm{r}$. Determine the circumference, correct to 2 decimal places, given $\mathrm{r}=8.40 \mathrm{~mm}$.
3. A formula used in connection with gases is $\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{T}}$. Evaluate R when $\mathrm{P}=1500, \mathrm{~V}=5$ and $\mathrm{T}=200$.
4. The velocity of a body is given by $v=u+a t$. The initial velocity u is measured when time t is 15 seconds and found to be $12 \mathrm{~m} / \mathrm{s}$. If the acceleration a is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ calculate the final velocity v .
5. Calculate the current I in an electrical circuit, correct to 3 significant figures, when $I=V / R$ amperes when the voltage V is measured and found to be 7.2 V and the resistance R is 17.7Ω.
6. Find the distance s , given that $\mathrm{s}=\frac{1}{2} \mathrm{gt}^{2}$. Time $t=0.032$ seconds and acceleration due to gravity $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Give the answer in millimetres correct to 3 significant figures.
7. The energy stored in a capacitor is given by $\mathrm{E}=\frac{1}{2} \mathrm{CV}^{2}$ joules. Determine the energy when capacitance $\mathrm{C}=5 \times 10^{-6}$ farads and voltage $\mathrm{V}=240 \mathrm{~V}$.
8. Find the area A of a triangle, correct to 1 decimal place, given $\mathrm{A}=\frac{1}{2} \mathrm{bh}$, when the base length b is 23.42 m and the height h is 53.7 m .
9. Resistance R_{2} is given by $\mathrm{R}_{2}=\mathrm{R}_{1}(1+\alpha \mathrm{t})$. Find R_{2}, correct to 4 significant figures, when $\mathrm{R}_{1}=220, \alpha=0.00027$ and $\mathrm{t}=75.6$.
10. Density $=\frac{\text { mass }}{\text { volume }}$. Find the density, correct to 4 significant figures, when the mass is 2.462 kg and the volume is $173 \mathrm{~cm}^{3}$. Give the answer in units of $\mathrm{kg} / \mathrm{m}^{3}$. Note that $1 \mathrm{~cm}^{3}=10^{-6} \mathrm{~m}^{3}$.
11. Evaluate resistance R_{T}, correct to 4 significant figures, given $\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$ when $\mathrm{R}_{1}=5.5 \quad \Omega, \mathrm{R}_{2}=7.42 \quad \Omega$ and $\mathrm{R}_{3}=12.6 \Omega$.
12. The potential difference, V volts, available at battery terminals is given by $\mathrm{V}=\mathrm{E}-\mathrm{Ir}$. Evaluate V when $\mathrm{E}=5.62, \mathrm{I}=0.70$ and $\mathrm{R}=4.30$.
13. The current I amperes flowing in a number of cells is given by $I=\frac{n E}{R+n r}$. Evaluate the current, correct to 3 significant figures, when $\mathrm{n}=36$. $\mathrm{E}=2.20, \mathrm{R}=2.80$ and $\mathrm{r}=0.50$.
14. Energy, E joules, is given by the formula $\mathrm{E}=\frac{1}{2} \mathrm{LI}^{2}$. Evaluate the energy when $\mathrm{L}=5.5$ H and $\mathrm{I}=1.2 \mathrm{~A}$.
15. The current I amperes in an a.c. circuit is given by $I=\frac{V}{\sqrt{\left(\mathrm{R}^{2}+\mathrm{X}^{2}\right)}}$. Evaluate the current, correct to 4 significant figures, when $\mathrm{V}=250 \mathrm{~V}, \mathrm{R}=11.0 \Omega$ and $\mathrm{X}=16.2 \Omega$.

1.2 Fractions

An example of a fraction is $\frac{2}{3}$ where the top line, i.e. the 2 , is referred to as the numerator and the bottom line, i.e. the 3 , is referred to as the denominator.

A proper fraction is one where the numerator is smaller than the denominator, examples being $\frac{2}{3}, \frac{1}{2}, \frac{3}{8}, \frac{5}{16}$, and so on.
An improper fraction is one where the denominator is smaller than the numerator, examples being $\frac{3}{2}, \frac{2}{1}, \frac{8}{3}, \frac{16}{5}$, and so on.
Addition of fractions is demonstrated in the following worked problems.

Problem 8. Evaluate A , given $\mathrm{A}=\frac{1}{2}+\frac{1}{3}$
The lowest common denominator of the two denominators 2 and 3 is 6 , i.e. 6 is the lowest number that both 2 and 3 will divide into.
Then $\frac{1}{2}=\frac{3}{6}$ and $\frac{1}{3}=\frac{2}{6}$ i.e. both $\frac{1}{2}$ and $\frac{1}{3}$ have the common denominator, namely 6 .
The two fractions can therefore be added as:
$\mathrm{A}=\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{3}}=\frac{3}{6}+\frac{2}{6}=\frac{3+2}{6}=\frac{\mathbf{5}}{\mathbf{6}}$

Problem 9. Evaluate A , given $\mathrm{A}=\frac{2}{3}+\frac{3}{4}$
A common denominator can be obtained by multiplying the two denominators together, i.e. the common denominator is $3 \times 4=12$.
The two fractions can now be made equivalent, i.e. $\frac{2}{3}=\frac{8}{12}$ and $\frac{3}{4}=\frac{9}{12}$
so that they can be easily added together, as follows:
$\mathrm{A}=\frac{2}{3}+\frac{3}{4}=\frac{8}{12}+\frac{9}{12}=\frac{8+9}{12}=\frac{17}{12}$
i.e. $A=\frac{2}{3}+\frac{\mathbf{3}}{4}=1 \frac{\mathbf{5}}{\mathbf{1 2}}$

Problem 10. Evaluate A, given $A=\frac{1}{6}+\frac{2}{7}+\frac{3}{2}$
A suitable common denominator can be obtained by multiplying $6 \times 7=42$, and all three denominators divide exactly into 42 .
Thus, $\frac{1}{6}=\frac{7}{42}, \frac{2}{7}=\frac{12}{42}$ and $\frac{3}{2}=\frac{63}{42}$
Hence, $\quad A=\frac{1}{6}+\frac{2}{7}+\frac{3}{2}=\frac{7}{42}+\frac{12}{42}+\frac{63}{42}$

$$
=\frac{7+12+63}{42}=\frac{82}{42}=\frac{41}{21}
$$

i.e. $\quad A=\frac{\mathbf{1}}{6}+\frac{\mathbf{2}}{7}+\frac{\mathbf{3}}{\mathbf{2}}=\mathbf{1} \frac{\mathbf{2 0}}{\mathbf{2 1}}$

Problem 11. Determine A as a single fraction,

$$
\text { given } A=\frac{1}{x}+\frac{2}{y}
$$

A common denominator can be obtained by multiplying the two denominators together, i.e. xy
Thus, $\frac{1}{x}=\frac{y}{x y} \quad$ and $\quad \frac{2}{y}=\frac{2 x}{x y}$
Hence, $\quad A=\frac{1}{x}+\frac{2}{y}=\frac{y}{x y}+\frac{2 x}{x y} \quad$ i.e. $A=\frac{y+2 x}{x y}$

Note that addition, subtraction, multiplication and division of fractions may be determined using a calculator (for example, the CASIO fx-991ES PLUS).
Locate the $\frac{\square}{\square}$ and $\square \frac{\square}{\square}$ functions on your calculator (the latter function is a shift function found above the
function) and then check the following worked problems.

Problem 12. Evaluate $\frac{1}{4}+\frac{2}{3}$ using a calculator
(i) Press $\frac{\square}{\square}$ function
(ii) Type in 1
(iii) Press \downarrow on the cursor key and type in 4
(iv) $\frac{1}{4}$ appears on the screen
(v) Press \rightarrow on the cursor key and type in +
(vi) Press $\frac{\square}{\square}$ function
(vii) Type in 2
(viii) Press \downarrow on the cursor key and type in 3
(ix) Press \rightarrow on the cursor key
(x) Press $=$ and the answer $\frac{11}{12}$ appears
(xi) Press $\mathrm{S} \Leftrightarrow \mathrm{D}$ function and the fraction changes to a decimal 0.9166666....
Thus, $\frac{\mathbf{1}}{\mathbf{4}}+\frac{\mathbf{2}}{\mathbf{3}}=\frac{\mathbf{1 1}}{\mathbf{1 2}}=\mathbf{0 . 9 1 6 7}$ as a decimal, correct to 4 decimal places

It is also possible to deal with mixed numbers on the calculator.
Press Shift then the $\frac{\square}{\square}$ function and $\square \frac{\square}{\square}$ appears
Problem 13. Evaluate $5 \frac{1}{5}-3 \frac{3}{4}$ using a calculator
(i) Press Shift then the $\frac{\square}{\square}$ function and $\square \frac{\square}{\square}$ appears on the screen
(ii) Type in 5 then \rightarrow on the cursor key
(iii) Type in 1 and \downarrow on the cursor key
(iv) Type in 5 and $5 \frac{1}{5}$ appears on the screen
(v) Press \rightarrow on the cursor key
(vi) Type in - and then press Shift then the function and $5 \frac{1}{5}-\square \frac{\square}{\square}$ appears on the screen
(vii) Type in 3 then \rightarrow on the cursor key
(viii) Type in 3 and \downarrow on the cursor key
(ix) Type in 4 and $5 \frac{1}{5}-3 \frac{3}{4}$ appears on the screen
(x) Press $=$ and the answer $\frac{29}{20}$ appears
(xi) Press shift and then $S \Leftrightarrow D$ function and $1 \frac{9}{20}$ appears
(xii) Press $\mathrm{S} \Leftrightarrow \mathrm{D}$ function and the fraction changes to a decimal 1.45
Thus, $\quad 5 \frac{\mathbf{1}}{5}-\mathbf{3} \frac{\mathbf{3}}{\mathbf{4}}=\frac{\mathbf{2 9}}{\mathbf{2 0}}=\mathbf{1} \frac{\mathbf{9}}{\mathbf{2 0}}=\mathbf{1 . 4 5}$ as a decimal

Now try the following Practice Exercise

Practice Exercise 3 Fractions (Answers on page 504)

In problems 1 to 3 , evaluate the given fractions.

1. $\frac{1}{3}+\frac{1}{4}$
2. $\frac{1}{5}+\frac{1}{4}$
3. $\frac{1}{6}+\frac{1}{2}-\frac{1}{5}$

In problems 4 and 5 , use a calculator to evaluate the given expressions.
4. $\frac{1}{3}-\frac{3}{4} \times \frac{8}{21}$
5. $\frac{3}{4} \times \frac{4}{5}-\frac{2}{3} \div \frac{4}{9}$
6. Evaluate $\frac{3}{8}+\frac{5}{6}-\frac{1}{2}$ as a decimal, correct to 4 decimal places.
7. Evaluate $8 \frac{8}{9} \div 2 \frac{2}{3}$ as a mixed number.
8. Evaluate $3 \frac{1}{5} \times 1 \frac{1}{3}-1 \frac{7}{10}$ as a decimal, correct to 3 decimal places.
9. Determine $\frac{2}{x}+\frac{3}{y}$ as a single fraction.

1.3 Percentages

Percentages are used to give a common standard. The use of percentages is very common in many aspects of commercial life, as well as in engineering. Interest rates, sale reductions, pay rises, exams and VAT are all examples where percentages are used.

Percentages are fractions having 100 as their denom-

 inator.For example, the fraction $\frac{40}{100}$ is written as 40% and is read as 'forty per cent'.
The easiest way to understand percentages is to go through some worked examples.

Problem 14. Express 0.275 as a percentage

$$
0.275=0.275 \times 100 \%=\mathbf{2 7 . 5 \%}
$$

Problem 15. Express 17.5% as a decimal number

$$
17.5 \%=\frac{17.5}{100}=\mathbf{0 . 1 7 5}
$$

Problem 16. Express $\frac{5}{8}$ as a percentage

$$
\frac{5}{8}=\frac{5}{8} \times 100 \%=\frac{500}{8} \%=\mathbf{6 2 . 5 \%}
$$

Problem 17. In two successive tests a student gains marks of 57/79 and 49/67. Is the second mark better or worse than the first?

$$
57 / 79=\frac{57}{79}=\frac{57}{79} \times 100 \%=\frac{5700}{79} \%=\mathbf{7 2 . 1 5 \%}
$$

correct to 2 decimal places.
$49 / 67=\frac{49}{67}=\frac{49}{67} \times 100 \%=\frac{4900}{6} \%=\mathbf{7 3 . 1 3} \%$
correct to 2 decimal places.
Hence, the second test mark is marginally better than the first test.
This question demonstrates how much easier it is to compare two fractions when they are expressed as percentages.

Problem 18. Express 75% as a fraction

$$
75 \%=\frac{75}{100}=\frac{\mathbf{3}}{\mathbf{4}}
$$

The fraction $\frac{75}{100}$ is reduced to its simplest form by cancelling, i.e. dividing numerator and denominator by 25 .

Problem 19. Express 37.5% as a fraction

$$
\begin{aligned}
37.5 \%= & \frac{37.5}{100} \\
= & \frac{375}{1000} \text { by multiplying numerator and } \\
& \text { denominator by } 10 \\
= & \frac{15}{40} \text { by dividing numerator and } \\
& \text { denominator by } 25 \\
= & \frac{\mathbf{3}}{\mathbf{8}} \text { by dividing numerator and } \\
& \text { denominator by } 5
\end{aligned}
$$

Problem 20. Find 27% of $£ 65$
27% of $£ 65=\frac{27}{100} \times 65=£ \mathbf{1 7 . 5 5}$ by calculator
Problem 21. A 160 GB iPod is advertised as costing $£ 190$ excluding VAT. If VAT is added at 20%, what will be the total cost of the iPod?

$$
\text { VAT }=20 \% \text { of } £ 190=\frac{20}{100} \times 190=£ 38
$$

$$
\text { Total cost of iPod }=£ 190+£ 38=£ 228
$$

A quicker method to determine the total cost is:

$$
1.20 \times £ 190=£ 228
$$

Problem 22. Express 23 cm as a percentage of 72 cm , correct to the nearest 1%

$$
\begin{aligned}
& 23 \mathrm{~cm} \text { as a percentage of } 72 \mathrm{~cm}=\frac{23}{72} \times 100 \% \\
&=31.94444 \ldots \ldots \% \\
&=\mathbf{3 2 \%} \text { correct to the } \\
& \text { nearest } 1 \%
\end{aligned}
$$

Problem 23. A box of screws increases in price from $£ 45$ to $£ 52$. Calculate the percentage change in cost, correct to 3 significant figures.

$$
\begin{aligned}
\% \text { change } & =\frac{\text { new value }- \text { original value }}{\text { original value }} \times 100 \% \\
& =\frac{52-45}{45} \times 100 \%=\frac{7}{45} \times 100 \\
& =\mathbf{1 5 . 6} \%=\text { percentage change in cost }
\end{aligned}
$$

Problem 24. A drilling speed should be set to 400 $\mathrm{rev} / \mathrm{min}$. The nearest speed available on the machine is $412 \mathrm{rev} / \mathrm{min}$. Calculate the percentage over-speed.

$$
\begin{aligned}
\% \text { over-speed } & =\frac{\text { available speed }- \text { correct speed }}{\text { correct speed }} \times 100 \% \\
& =\frac{412-400}{400} \times 100 \%=\frac{12}{400} \times 100 \%=\mathbf{3 \%}
\end{aligned}
$$

Now try the following Practice Exercise

Practice Exercise 4 Percentages (Answers on page 504)

In problems 1 and 2 , express the given numbers as percentages.

1. 0.057
2. 0.374
3. Express 20% as a decimal number
4. Express $\frac{11}{16}$ as a percentage
5. Express $\frac{5}{13}$ as a percentage, correct to 3 decimal places
6. Place the following in order of size, the smallest first, expressing each as percentages, correct to 1 decimal place: (a) $\frac{12}{21}$ (b) $\frac{9}{17}$ (c) $\frac{5}{9}$ (d) $\frac{6}{11}$
7. Express 65% as a fraction in its simplest form
8. Calculate 43.6% of 50 kg
9. Determine 36% of 27 m
10. Calculate correct to 4 significant figures:
(a) 18% of 2758 tonnes
(b) 47% of 18.42 grams (c) 147% of 14.1 seconds
11. Express: (a) 140 kg as a percentage of 1 t
(b) 47 s as a percentage of 5 min
(c) 13.4 cm as a percentage of 2.5 m
12. A computer is advertised on the internet at $£ 520$, exclusive of VAT. If VAT is payable at 20%, what is the total cost of the computer?
13. Express 325 mm as a percentage of 867 mm , correct to 2 decimal places.
14. When signing a new contract, a Premiership footballer's pay increases from $£ 15,500$ to $£ 21,500$ per week. Calculate the percentage pay increase, correct 3 significant figures.
15. A metal rod 1.80 m long is heated and its length expands by 48.6 mm . Calculate the percentage increase in length.
