

SIXTH EDITION ELECTRICAL AND ELECTRONIC PRINCIPLES AND TECHNOLOGY

This practical resource introduces electrical and electronic principles and technology covering theory through detailed examples, enabling students to develop a sound understanding of the knowledge required by technicians in fields such as electrical engineering, electronics and telecommunications. No previous background in engineering is assumed, making this an ideal text for vocational courses at Levels 2 and 3, foundation degrees and introductory courses for undergraduates. John Bird, BSc (Hons), CEng, CSci, CMath, FITE, FIMA, FCollT, is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently he has combined freelance lecturing and examining, and is the author of over 130 textbooks on engineering and mathematical subjects with worldwide sales of over one million copies. He is currently lecturing at the Defence School of Marine and Air Engineering in the Defence College of Technical Training at HMS Sultan, Gosport, Hampshire, UK. To Sue

Electrical and Electronic Principles and Technology

Sixth edition

John Bird

Sixth edition published 2017 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by Routledge 711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2017 John Bird

The right of John Bird to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Newnes 2000 Fifth edition published by Routledge 2014

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data Names: Bird, J. O., author. Title: Electrical and electronic principles and technology / John Bird. Description: 6th ed. | Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017] | Includes index. Identifiers: LCCN 2016038058| ISBN 9781138673526 | ISBN 9781315561875 Subjects: LCSH: Electrical engineering. Classification: LCC TK146 .B57 2017 | DDC 621.3–dc23 LC record available at https://lccn.loc.gov/2016038058

ISBN: 978-1-138-67352-6 (pbk) ISBN: 978-1-315-56187-5 (ebk)

Typeset in Times by Servis Filmsetting Ltd, Stockport, Cheshire

Visit the companion website: www.routledge.com/cw/bird

Contents

Preface

]	Part 1	Revision of Some Basic	
		Mathematics	1
1	Som	e mathematics revision	3
	1.1	Use of calculator and evaluating formulae	3
	1.2	Fractions	6
	1.3	Percentages	8
	1.4	Ratio and proportion	10
	1.5	Laws of indices	13
	1.6	Brackets	15
	1.7	Solving simple equations	16
	1.8	Transposing formulae	18
	1.9	Solving simultaneous equations	20
2	Furt	her mathematics revision	22
	2.1	Radians and degrees	23
	2.2	Measurement of angles	24
	2.3	Trigonometry revision	25
	2.4	Logarithms and exponentials	27
	2.5	Straight line graphs	32
	2.6	Gradients, intercepts and equation of a graph	34
	2.7	Practical straight line graphs	36
	2.8	Calculating areas of common shapes	38

X

Formulae for revision of some basic mathematics

Multiple choice questions on chapters 1 and 2

Part 2 Basic Electrical and Electronic Engineering Principles

3	Units	associated with basic electrical quantities	55
	3.1	SI units	55
	3.2	Charge	56
	3.3	Force	57
	3.4	Work	57
	3.5	Power	58
	3.6	Electrical potential and e.m.f.	59
	3.7	Resistance and conductance	59

	3.8	Electrical power and energy	60
	3.9	Summary of terms, units and their symbols	61
4	An in	troduction to electric circuits	63
	4.1	Electrical/electronic system	
		block diagrams	64
	4.2	Standard symbols for electrical componen	ts 65
	4.3	Electric current and quantity of electricity	65
	4.4	Potential difference and resistance	66
	4.5	Basic electrical measuring instruments	66
	4.6	Linear and non-linear devices	67
	4.7	Ohm's law	67
	4.8	Multiples and sub-multiples	67
	4.9	Conductors and insulators	69
	4.10	Electrical power and energy	69
	4.11	Main effects of electric current	72
	4.12	Fuses	73
	4.13	Insulation and the dangers of constant	
		high current flow	73
5	Resist	tance variation	76
	5.1	Resistor construction	76
	5.2	Resistance and resistivity	77
	5.3	Temperature coefficient of resistance	79
	5.4	Resistor colour coding and ohmic values	81
6	Batte	ries and alternative sources of energy	85
	6.1	Introduction to batteries	86
	6.2	Some chemical effects of electricity	86
	6.3	The simple cell	87
	6.4	Corrosion	88
	6.5	E.m.f. and internal resistance of a cell	88
	6.6	Primary cells	90
	6.7	Secondary cells	91
	6.8	Lithium-ion batteries	93
	6.9	Cell capacity	96
	6.10	Safe disposal of batteries	96
	6.11	Fuel cells	96
	6.12	Alternative and renewable energy sources	97
	6.13	Solar energy	98
Re	vision '	Test 1	103

7	Serie	es and parallel networks	104
	7.1	Series circuits	104
	7.2	Potential divider	106

•	^
VI	(ontents
V I	contents

	7.3	Parallel networks	107
	7.4	Current division	110
	7.5	Loading effect	114
	7.6	Potentiometers and rheostats	115
	7.7	Relative and absolute voltages	117
	7.8	Earth potential and short circuits	119
	7.9	Wiring lamps in series and in parallel	119
8	Сара	citors and capacitance	122
	8.1	Introduction to capacitors	123
	8.2	Electrostatic field	123
	8.3	Electric field strength	124
	8.4	Capacitance	124
	8.5	Capacitors	125
	8.6	Electric flux density	126
	8.7	Permittivity	126
	8.8	The parallel plate capacitor	128
	8.9	Capacitors connected in parallel and series	129
	8.10	Dielectric strength	133
	8.11	Energy stored in capacitors	134
	8.12	Practical types of capacitor	135
	8.13	Supercapacitors	137
	8.14	Discharging capacitors	138
9	Magn	netic circuits	141
	9.1	Introduction to magnetism and magnetic	
		circuits	142
	9.2	Magnetic fields	143
	9.3	Magnetic flux and flux density	144
	9.4	Magnetomotive force and magnetic field strength	144
	9.5	Permeability and B–H curves	145
	9.6	Reluctance	148
	9.7	Composite series magnetic circuits	149
	9.8	Comparison between electrical and	
		magnetic quantities	152
	9.9	Hysteresis and hysteresis loss	153
R	evision	Test 2	156
10	Elect	romagnetism	157
	10.1	Magnetic field due to an electric current	158
	10.2	Electromagnets	159
	10.3	Force on a current-carrying conductor	161
	10.4	Principle of operation of a simple	164
	10.5	u.c. motor	104
	10.3	instrument	164
	10.6	Force on a charge	165
	10.0		100
11	Elect	romagnetic induction	168
	11.1	introduction to electromagnetic induction	169

11.1	Introduction to electromagnetic induction	169
11.2	Laws of electromagnetic induction	170

11.3	Rotation of a loop in a magnetic field	173
11.4	Inductance	174
11.5	Inductors	176
11.6	Energy stored	176
11.7	Inductance of a coil	177
11.8	Mutual inductance	179

Electrical measuring instruments					
and measurements	183				
12.1 Introduction	184				
12.2 Analogue instruments	184				
12.3 Shunts and multipliers	184				
12.4 Electronic instruments	186				
12.5 The ohmmeter	186				
12.6 Multimeters	187				
12.7 Wattmeters	187				
12.8 Instrument 'loading' effect	187				
12.9 The oscilloscope	189				
12.10 Virtual test and measuring instruments	194				
12.11 Virtual digital storage oscilloscopes	195				
12.12 Waveform harmonics	198				
12.13 Logarithmic ratios	199				
12.14 Null method of measurement	202				
12.15 Wheatstone bridge	202				
12.16 D.c. potentiometer	203				
12.17 A.c. bridges	204				
12.18 Q-meter	205				
12.19 Measurement errors	206				

13 Semiconductor diodes

Semio	Semiconductor diodes		
13.1	Types of material	212	
13.2	Semiconductor materials	212	
13.3	Conduction in semiconductor materials	214	
13.4	The p–n junction	214	
13.5	Forward and reverse bias	215	
13.6	Semiconductor diodes	218	
13.7	Characteristics and maximum ratings	219	
13.8	Rectification	219	
13.9	Zener diodes	220	
13.10	Silicon controlled rectifiers	221	
13.11	Light emitting diodes	222	
13.12	Varactor diodes	222	
13.13	Schottky diodes	222	
Trong	istore	226	
11 ans	15101 5	220	

14	Trans	sistors	226
	14.1	Transistor classification	227
	14.2	Bipolar junction transistors (BJTs)	227
	14.3	Transistor action	228
	14.4	Leakage current	229
	14.5	Bias and current flow	230
	14.6	Transistor operating configurations	230
	14.7	Bipolar transistor characteristics	230

Contents vii

	14.8	Transistor parameters	232
	14.9	Current gain	234
	14.10	Typical BJT characteristics and maximum	
		ratings	234
	14.11	Field effect transistors	235
	14.12	Field effect transistor characteristics	236
	14.13	Typical FET characteristics and maximum	
		ratings	238
	14.14	Transistor amplifiers	238
	14.15	Load lines	240
v	ision T	Fest 3	247

Revision Test 3	
------------------------	--

Formulae for basic electrical and electronic	
principles	248

Pa	rt 3	Further Electrical and Electronic Principles	249
15	D.c. c	ircuit theory	251
	15.1	Introduction	251
	15.2	Kirchhoff's laws	252
	15.3	The superposition theorem	256
	15.4	General d.c. circuit theory	259
	15.5	Thévenin's theorem	261
	15.6	Constant-current source	266
	15.7	Norton's theorem	266
	15.8	Thévenin and Norton equivalent networks	269
	15.9	Maximum power transfer theorem	272
16	Alter	nating voltages and currents	278
	16.1	Introduction	279
	16.2	The a.c. generator	279
	16.3	Waveforms	280
	16.4	A.c. values	281
	16.5	Electrical safety – insulation and fuses	285
	16.6	The equation of a sinusoidal waveform	285
	16.7	Combination of waveforms	287
	16.8	Rectification	291
	16.9	Smoothing of the rectified output	
		waveform	292
Re	vision	Test 4	295

17	Single	e-phase series a.c. circuits	296
	17.1	Purely resistive a.c. circuit	297
	17.2	Purely inductive a.c. circuit	297

	17.3	Purely capacitive a.c. circuit	298
	17.4	R-L series a.c. circuit	299
	17.5	R-C series a.c. circuit	303
	17.6	R-L-C series a.c. circuit	304
	17.7	Series resonance	308
	17.8	Q-factor	309
	17.9	Bandwidth and selectivity	310
	17.10	Power in a.c. circuits	311
	17.11	Power triangle and power factor	312
18	Single	-phase parallel a.c. circuits	318
	18.1	Introduction	319
	18.2	<i>R</i> – <i>L</i> parallel a.c. circuit	319
	18.3	R-C parallel a.c. circuit	320
	18.4	<i>L</i> – <i>C</i> parallel circuit	321
	18.5	<i>LR</i> – <i>C</i> parallel a.c. circuit	323
	18.6	Parallel resonance and <i>Q</i> -factor	326
	18.7	Power factor improvement	330
19	Filter	networks	337
	19.1	Introduction	337
	19.2	Two-port networks and characteristic	
		impedance	338
	19.3	Low-pass filters	338
	19.4	High-pass filters	341
	19.5	Band-pass filters	345
	19.6	Band-stop filters	346
20	D.c. tr	ansients	349
	20.1	Introduction	350
	20.2	Charging a capacitor	350
	20.3	Time constant for a $C-R$ circuit	351
	20.4	Transient curves for a $C-R$ circuit	351
	20.5	Discharging a capacitor	355
	20.6	Camera flash	357
	20.7	Current growth in an $L-R$ circuit	357
	20.8	Time constant for an $L-R$ circuit	358
	20.9	Transient curves for an $L-R$ circuit	358
	20.10	Current decay in an $L-R$ circuit	360
	20.11	Switching inductive circuits	362
	20.12	The effects of time constant on a	362
		rectangular wavelollin	302
21	Opera	tional amplifiers	366
	21.1	Introduction to operational amplifiers	367
	21.2	Some op amp parameters	368
	21.3	Op amp inverting amplifier	369
	21.4	Op amp non-inverting amplifier	3/2
	21.3 21.4	Op amp summing amplifar	5/2
	21.0	Op amp voltage comparator	271
	21.7 21.8	On amp integrator	374
	21.0	op unip intoStutor	515

Revision Test 5		382
21.11 Analogue to dig	ital (A/D) conversion	379
21.10 Digital to analog	gue (D/A) conversion	377
21.9 Op amp differen	tial amplifier	375

Formulae for further electrical and electronic	
principles	383

Part 4 Electrical Power Technology 385

22	Ways	of generating electricity – the present	
	and th	ne future	387
	22.1	Introduction	388
	22.2	Generating electrical power using coal	388
	22.3	Generating electrical power using oil	390
	22.4	Generating electrical power using natural	
		gas	391
	22.5	Generating electrical power using nuclear	
		energy	392
	22.6	Generating electrical power using hydro	
		power	393
	22.7	Generating electrical power using pumped	
		storage	394
	22.8	Generating electrical power using wind	395
	22.9	Generating electrical power using tidal	205
	22.10	power	395
	22.10	Generating electrical power using biomass	397
	22.11	Generating electrical power using solar	207
	22.12	energy	397
	22.12	Harnessing the power of wind, tide and	
		possibility?	308
		possionity:	570
23	Three	-phase systems	401
	23.1	Introduction	402
	23.2	Three-phase supply	402
	23.3	Star connection	402
	23.4	Delta connection	406
	23.5	Power in three-phase systems	407
	23.6	Measurement of power in three-phase	
		systems	409
	23.7	Comparison of star and delta connections	414
	23.8	Advantages of three-phase systems	414
24	Trans	formers	417
	24.1	Introduction	418
	24.2	Transformer principle of operation	418
	24.3	Transformer no-load phasor diagram	421
	24.4	E.m.f. equation of a transformer	422

24.5	Transformer on-load phasor diagram	424
24.6	Transformer construction	425
24.7	Equivalent circuit of a transformer	426
24.8	Regulation of a transformer	428
24.9	Transformer losses and efficiency	428
24.10	Resistance matching	431
24.11	Auto transformers	433
24.12	Isolating transformers	435
24.13	Three-phase transformers	435
24.14	Current transformers	437
24.15	Voltage transformers	438

Revision Test 6

25	D.c. m	achines	442
	25.1	Introduction	443
	25.2	The action of a commutator	443
	25.3	D.c. machine construction	444
	25.4	Shunt, series and compound windings	444
	25.5	E.m.f. generated in an armature winding	445
	25.6	D.c. generators	447
	25.7	Types of d.c. generator and their	
		characteristics	447
	25.8	D.c. machine losses	451
	25.9	Efficiency of a d.c. generator	451
	25.10	D.c. motors	452
	25.11	Torque of a d.c. motor	453
	25.12	Types of d.c. motor and their	
		characteristics	455
	25.13	The efficiency of a d.c. motor	458
	25.14	D.c. motor starter	461
	25.15	Speed control of d.c. motors	461
	25.16	Motor cooling	464

26	Three	-phase induction motors	467
	26.1	Introduction	468
	26.2	Production of a rotating magnetic field	468
	26.3	Synchronous speed	470
	26.4	Construction of a three-phase induction	
		motor	471
	26.5	Principle of operation of a three-phase	
		induction motor	471
	26.6	Slip	472
	26.7	Rotor e.m.f. and frequency	473
	26.8	Rotor impedance and current	474
	26.9	Rotor copper loss	474
	26.10	Induction motor losses and efficiency	475
	26.11	Torque equation for an induction	
		motor	476
	26.12	Induction motor torque-speed	
		characteristics	479

Contents ix

26.13 Starting methods for induction motors	480
26.14 Advantages of squirrel-cage induction motors	480
26.15 Advantages of wound rotor induction motors	481
26.16 Double cage induction motor	481
26.17 Uses of three-phase induction motors	482
vision Test 7	485

Revision Test 7

Formul	lae for	electrical	power	techno	logy

Pa	487		
27	Some	practical laboratory experiments	489
	27.1	Ohm's law	490
	27.2	Series-parallel d.c. circuit	491
	27.3	Superposition theorem	492
	27.4	Thévenin's theorem	494
	27.5	Use of an oscilloscope to measure	
		voltage, frequency and phase	496

nswers to Practice Exercises				
27	0 Charging and discharging a capacitor	503		
27	Parallel a.c. circuit and resonance	501		
27	Series a.c. circuit and resonance	499		
27	Measurement of the inductance of a coil	498		
	rectifier	497		
27	Use of an oscilloscope with a bridge			

Answers to Practice Exercises

-		0.1
	U	IC X

Preface

Electrical and Electronic Principles and Technology, 6th Edition introduces the principles which describe the operation of d.c. and a.c. circuits, covering both steady and transient states, and applies these principles to filter networks, operational amplifiers, three-phase supplies, transformers, d.c. machines and three-phase induction motors.

In this new sixth edition, **new material added** includes some mathematics revision needed for electrical and electronic principles, ways of generating electricity – the present and the future (including more on renewable energy), more on lithium-ion batteries and solar energy, along with other minor modifications.

This sixth edition of the textbook provides coverage of the following latest syllabuses:

- (i) 'Electrical and Electronic Principles' (BTEC Level 3 Nationals Specification in Engineering, Unit 6) see chapters 3–12, 13 (part), 14 (part), 16, 17 (part), 18 (part), 20 (part), 24 (part), 25 (part).
- (ii) 'Further Electrical Principles' (BTEC National Certificate and National Diploma, Unit 64) – see chapters 15, 17–20, 23, 25, 26.
- (iii) Parts of the following BTEC National syllabuses: Electrical Technology (Unit 51), Principles and operation of three-phase systems (Unit 62) and Three-phase motors and drives (Unit 63).
- (iv) Various parts of City & Guilds Technician Certificate/Diploma in Electrical and Electronic Engineering/Telecommunication Systems.
- (v) 'Electrical and Electronic Principles' (EAL Advanced Diploma in Engineering and Technology).
- (vi) Any introductory/Access/Foundation course involving Electrical and Electronic Engineering Principles.

The **text** is set out in five main sections:

Part 1, comprising chapters 1 and 2, involves **Revision of Some Basic Mathematics** needed for Electrical and Electronic Principles.

Part 2, comprising chapters 3 to 14, involves essential **Basic Electrical and Electronic Engineering Principles**, with chapters on electrical units and quantities, introduction to electric circuits, resistance variation, chemical effects of electricity, series and parallel networks, capacitors and capacitance, magnetic circuits, electromagnetism, electromagnetic induction, electrical measuring instruments and measurements, semiconductors diodes and transistors.

Part 3, comprising chapters 15 to 21, involves **Further Electrical and Electronic Principles**, with chapters on d.c. circuit theory, alternating voltages and currents, single-phase series and parallel networks, filter networks, d.c. transients and operational amplifiers.

Part 4, comprising chapters 22 to 26, involves **Electrical Power Technology**, with chapters on ways of generating electricity – the present and the future, three-phase systems, transformers, d.c. machines and three-phase induction motors.

Part 5, comprising chapter 27, details 10 practical laboratory experiments.

Each topic considered in the text is presented in a way that assumes in the reader little previous knowledge of that topic. Theory is introduced in each chapter by a reasonably brief outline of essential information, definitions, formulae, procedures, etc. The theory is kept to a minimum, for problem solving is extensively used to establish and exemplify the theory. It is intended that readers will gain real understanding through seeing problems solved and then through solving similar problems themselves.

Electrical and Electronic Principles and Technology, 6th Edition contains some **500 worked problems** to

aid understanding. Also included are over **500 short answer questions**, the answers for which can be determined from the preceding material in that particular chapter, together with **404 multi-choice questions**, and over **850 further questions**, arranged in **172 Practice Exercises**, all with answers at the back of the book. The Practice Exercises appear at regular intervals – every 3 or 4 pages – throughout the text. **622 line diagrams** further enhance the understanding of the theory. All of the problems – multi-choice, short answer and further questions – mirror practical situations found in electrical and electronic engineering.

At regular intervals throughout the text are seven **Revision Tests** to check understanding. For example, Revision Test 1 covers material contained in chapters 3 to 6, Revision Test 2 covers the material contained in chapters 7 to 9, and so on. These Revision Tests do not have answers given since it is envisaged that lecturers/instructors could set the Tests for students to attempt as part of their course structure. Lecturers/instructors may access a free Internet download of full solutions of the Revision Tests in an **Instructor's Manual** – see below.

I am once again grateful to **Mike Tooley** for his help and advice in the work involved in preparing this sixth edition of the text

A list of relevant **formulae** are included at the end of each of the first four parts of the book.

'Learning by Example' is at the heart of *Electrical and Electronic Principles and Technology, 6th Edition.*

JOHN BIRD Royal Naval Defence College of Marine and Air Engineering, HMS Sultan, formerly University of Portsmouth and Highbury College, Portsmouth

John Bird is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently, he has combined freelance lecturing at the University of Portsmouth, with examiner responsibilities for Advanced Mathematics with City and Guilds, and examining for International Baccalaureat. He is the author of some 130 textbooks on engineering and mathematical subjects with worldwide sales of over one million copies. He is currently lecturing at the Defence School of Marine and Air Engineering in the Defence College of Technical Training at HMS Sultan, Gosport, Hampshire, UK.

Free Web downloads

The following support material is available from www.routledge.com/cw/bird

For Students:

- 1. Full solutions to all 850 further questions in the Practice Exercises
- 2. A set of formulae for each of the first four parts of the text
- 3. Multiple choice questions sheets
- 4. Information on 29 Engineers/Scientists mentioned in the text

For Lecturers/Instructors:

- 1. Full solutions to all 850 further questions in the Practice Exercises
- 2. Full solutions and marking scheme for each of the 7 Revision Tests. Also, each test may be downloaded.
- **3.** Lesson Plans and revision material. Typical 30-week lesson plans for 'Electrical and Electronic Principles', Unit 6, and 'Further Electrical Principles', Unit 64, are included, together with two practice examination question papers (with solutions) for each of the modules.
- **4.** Laboratory Experiments. In chapter 27, 10 practical laboratory experiments are included. It maybe that tutors will want to edit these experiments to suit their own equipment/component availability.
- 5. A set of formulae for each of the first four parts of the text
- 6. Multiple choice questions sheets
- 7. Information on 29 Engineers/Scientists mentioned in the text
- 8. All 622 illustrations used in the text may be downloaded for use in PowerPoint presentations

Part 1

Revision of Some Basic Mathematics

Chapter 1

Some mathematics revision

Why it is important to understand: Some mathematics revision

Mathematics is a vital tool for professional and chartered engineers. It is used in electrical and electronic engineering, in mechanical and manufacturing engineering, in civil and structural engineering, in naval architecture and marine engineering and in aeronautical and rocket engineering. In these various branches of engineering, it is very often much cheaper and safer to design your artefact with the aid of mathematics – rather than through guesswork. 'Guesswork' may be reasonably satisfactory if you are designing an exactly similar artefact as one that has already proven satisfactory; however, the classification societies will usually require you to provide the calculations proving that the artefact is safe and sound. Moreover, these calculations may not be readily available to you and you may have to provide fresh calculations, to prove that your artefact is 'roadworthy'. For example, if you design a tall building or a long bridge by 'guesswork', and the building or bridge do not prove to be structurally reliable, it could cost you a fortune to rectify the deficiencies. This cost may dwarf the initial estimate you made to construct these structures, and cause you to go bankrupt. Thus, without mathematics, the prospective professional or chartered engineer is very severely disadvantaged.

Knowledge of mathematics provides the basis for all engineering.

At the end of this chapter you should be able to:

- use a calculator and evaluate formulae
- manipulate fractions
- understand and perform calculations with percentages
- appreciate ratios and direct and inverse proportion
- understand and use the laws of indices
- expand equations containing brackets
- solve simple equations
- transpose formulae
- solve simultaneous equations in two unknowns

1.1 Use of calculator and evaluating formulae

In engineering, calculations often need to be performed. For simple numbers it is useful to be able to use mental arithmetic. However, when numbers are larger an electronic calculator needs to be used.

In engineering calculations it is essential to have a scientific notation calculator which will have all the necessary functions needed, and more. This chapter assumes you havea CASIO fx-991ES PLUS

Electrical and Electronic Principles and Technology. 978-1-138-67352-6. © 2017 John Bird. Published by Taylor & Francis. All rights reserved.

4 Electrical and Electronic Principles and Technology

calculator, or similar. If you can accurately use a calculator, your confidence with engineering calculations will improve.

Check that you can use a calculator in the following Practice Exercise

Practice Exercise 1 Use of calculator (Answers on page 504)

- 1. Evaluate 378.37 298.651 + 45.64 94.562 17.35 × 34.27
- 2. Evaluate $\frac{17.35 \times 34.27}{41.53 \div 3.76}$ correct to 3 decimal places
- 3. Evaluate $\frac{(4.527 + 3.63)}{(452.51 \div 34.75)} + 0.468$ correct to 5 significant figures
- 4. Evaluate $52.34 \frac{(912.5 \div 41.46)}{(24.6 13.652)}$ correct to 3 decimal places
- 5. Evaluate $\frac{52.14 \times 0.347 \times 11.23}{19.73 \div 3.54}$ correct to 4 significant figures
- 6. Evaluate 6.85^2 correct to 3 decimal places
- 7. Evaluate $(0.036)^2$ in engineering form
- 8. Evaluate 1.3^3
- 9. Evaluate $(0.38)^3$ correct to 4 decimal places
- 10. Evaluate $(0.018)^3$ in engineering form
- 11. Evaluate $\frac{1}{0.00725}$ correct to 1 decimal place
- 12. Evaluate $\frac{1}{0.065} \frac{1}{2.341}$ correct to 4 significant figures
- 13. Evaluate 2.1^4
- 14. Evaluate $(0.22)^5$ correct to 5 significant figures in engineering form
- 15. Evaluate $(1.012)^7$ correct to 4 decimal places
- 16. Evaluate $1.1^3 + 2.9^4 4.4^2$ correct to 4 significant figures
- 17. Evaluate $\sqrt{34528}$ correct to 2 decimal places
- 18. Evaluate $\sqrt[3]{17}$ correct to 3 decimal places
- 19. Evaluate $\sqrt[6]{2451} \sqrt[4]{46}$ correct to 3 decimal places

Express the answers to questions 20 to 23 in engineering form.

20. Evaluate $5 \times 10^{-3} \times 7 \times 10^{8}$ $6 \times 10^{3} \times 14 \times 10^{-4}$

21. Evaluate
$$\frac{6 \times 10^{6} \times 11 \times 10^{6}}{2 \times 10^{6}}$$

- 22. Evaluate $\frac{56.43 \times 10^{-3} \times 3 \times 10^{4}}{8.349 \times 10^{3}}$ correct to 3 decimal places
- 23. Evaluate $\frac{99 \times 10^5 \times 6.7 \times 10^{-3}}{36.2 \times 10^{-4}}$ correct to 4 significant figures
- 24. Evaluate $\frac{4}{5} \frac{1}{3}$ as a decimal, correct to 4 decimal places
- 25. Evaluate $\frac{2}{3} \frac{1}{6} + \frac{3}{7}$ as a fraction
- 26. Evaluate $2\frac{5}{6} + 1\frac{5}{8}$ as a decimal, correct to 4 significant figures
- 27. Evaluate $5\frac{6}{7} 3\frac{1}{8}$ as a decimal, correct to 4 significant figures
- 28. Evaluate $\frac{3}{4} \times \frac{4}{5} \frac{2}{3} \div \frac{4}{9}$ as a fraction
- 29. Evaluate $8\frac{8}{9} \div 2\frac{2}{3}$ as a mixed number
- 30. Evaluate $3\frac{1}{5} \times 1\frac{1}{3} 1\frac{7}{10}$ as a decimal, correct to 3 decimal places

31. Evaluate
$$\frac{\left(4\frac{1}{5}-1\frac{2}{3}\right)}{\left(3\frac{1}{4}\times2\frac{3}{5}\right)} - \frac{2}{9}$$
 as a decimal, correct to 3 significant figures

In questions 32 to 38, evaluate correct to 4 decimal places.

- 32. Evaluate $\sin 67^{\circ}$
- 33. Evaluate $\tan 71^{\circ}$
- 34. Evaluate $\cos 63.74^{\circ}$
- 35. Evaluate $\tan 39.55^\circ \sin 52.53^\circ$
- 36. Evaluate sin(0.437 rad)
- 37. Evaluate tan(5.673 rad)
- 38. Evaluate $\frac{(\sin 42.6^\circ) (\tan 83.2^\circ)}{\cos 13.8^\circ}$

In questions 39 to 45, evaluate correct to 4 significant figures.

39. 1.59π 40. $2.7(\pi - 1)$ 41. $\pi^2 (\sqrt{13} - 1)$ 42. $8.5e^{-2.5}$

43.
$$3e^{(2\pi-1)}$$

44. $\sqrt{\left[\frac{5.52\pi}{2e^{-2} \times \sqrt{26.73}}\right]}$
45. $\sqrt{\left[\frac{e^{(2-\sqrt{3})}}{\pi \times \sqrt{8.57}}\right]}$

Evaluation of formulae

The statement $\mathbf{y} = \mathbf{mx} + \mathbf{c}$ is called a **formula** for y in terms of m, x and c y; m, x and c are called **symbols**. When given values of m, x and c we can evaluate y. There are a large number of formulae used in engineering and in this section we will insert numbers in place of symbols to evaluate engineering quantities. Here are some practical examples. Check with your calculator that you agree with the working and answers.

Problem 1. In an electrical circuit the voltage V is given by Ohm's law, i.e. V = IR. Find, correct to 4 significant figures, the voltage when I = 5.36 A and $R = 14.76 \Omega$

$$V = IR = I \times R = 5.36 \times 14.76$$

Hence, voltage V = 79.11 V, correct to 4 significant figures

Problem 2. Velocity v is given by v = u + at. If u = 9.54 m/s, $a = 3.67 \text{ m/s}^2$ and t = 7.82 s, find v, correct to 3 significant figures.

$$v = u + at = 9.54 + 3.67 \times 7.82$$
$$= 9.54 + 28.6994 = 38.2394$$

Hence, velocity v = 38.2 m/s, correct to 3 significant figures

Problem 3. The area, A, of a circle is given by $A = \pi r^2$. Determine the area correct to 2 decimal places, given radius r = 5.23 m

$$A = \pi r^2 = \pi (5.23)^2 = \pi (27.3529)$$

Hence, area, $A = 85.93 \text{ m}^2$, correct to 2 decimal places

Problem 4. Density $=\frac{\text{mass}}{\text{volume}}$. Find the density when the mass is 6.45 kg and the volume is $300 \times 10^{-6} \text{ m}^3$.

Density =
$$\frac{\text{mass}}{\text{volume}} = \frac{6.45 \text{ kg}}{300 \times 10^{-6} \text{ m}^3} = 21500 \text{ kg/m}^3$$

Problem 5. The power, P watts, dissipated in an electrical circuit is given by the formula $P = \frac{V^2}{R}$. Evaluate the power, correct to 4 significant figures, given that V = 230 V and $R = 35.63 \Omega$

$$P = \frac{V^2}{R} = \frac{(230)^2}{35.63} = \frac{52900}{35.63} = 1484.70390\dots$$

Press ENG and 1.48470390.. $\times 10^3$ appears on the screen.

Hence, power, P = 1485 W or 1.485 kW correct to 4 significant figures.

Problem 6. Resistance, R Ω , varies with temperature according to the formula $R = R_0(1 + \alpha t)$. Evaluate R, correct to 3 significant figures, given $R_0 = 14.59$, $\alpha = 0.0043$ and t = 80.

$$R = R_0(1 + \alpha t) = 14.59[1 + (0.0043)(80)]$$
$$= 14.59(1 + 0.344) = 14.59(1.344)$$

Hence, resistance, $R = 19.6 \Omega$, correct to 3 significant figures

Problem 7. The current, I amperes, in an a.c. circuit is given by: $I = \frac{V}{\sqrt{(R^2 + X^2)}}$ Evaluate the current, correct to 2 decimal places, when V = 250 V, $R = 25.0 \Omega$ and $X = 18.0 \Omega$.

$$I = \frac{V}{\sqrt{(R^2 + X^2)}} = \frac{250}{\sqrt{(25.0^2 + 18.0^2)}} = 8.11534341.....$$

Hence, current, I = 8.12 A, correct to 2 decimal places

Now try the following Practice Exercise

Practice Exercise 2 Evaluation of formulae (Answers on page 504)

1. The area A of a rectangle is given by the formula $A = l \times b$. Evaluate the area, correct to 2 decimal places, when l = 12.4 cm and b = 5.37 cm.

- The circumference C of a circle is given by the formula $C = 2\pi r$. Determine the circumference, correct to 2 decimal places, given r = 8.40 mm.
- 3. A formula used in connection with gases is $R = \frac{PV}{T}$. Evaluate R when P = 1500, V = 5 and T = 200.
- The velocity of a body is given by v = u + at. 4. The initial velocity u is measured when time t is 15 seconds and found to be 12 m/s. If the acceleration a is 9.81 m/s² calculate the final velocity v.
- 5. Calculate the current I in an electrical circuit, correct to 3 significant figures, when I = V/Ramperes when the voltage V is measured and found to be 7.2 V and the resistance R is 17.7 Ω.
- 6. Find the distance s, given that $s = \frac{1}{2}gt^2$. Time t = 0.032 seconds and acceleration due to gravity g = 9.81 m/s². Give the answer in millimetres correct to 3 significant figures.
- 7. The energy stored in a capacitor is given by $E = \frac{1}{2}CV^2$ joules. Determine the energy when capacitance $C = 5 \times 10^{-6}$ farads and voltage V = 240 V.
- 8. Find the area A of a triangle, correct to 1 decimal place, given $A = \frac{1}{2}bh$, when the base length b is 23.42 m and the height h is 53.7 m.
- 9. Resistance R_2 is given by $R_2 = R_1(1 + \alpha t)$. Find R₂, correct to 4 significant figures, when $R_1 = 220$, $\alpha = 0.00027$ and t = 75.6.
- 10. Density = $\frac{\text{mass}}{\text{volume}}$. Find the density, correct to 4 significant figures, when the mass is 2.462 kg and the volume is 173 cm^3 . Give the answer in units of kg/m³. Note that $1 \text{ cm}^3 = 10^{-6} \text{ m}^3$.
- 11. Evaluate resistance R_T, correct to 4 signif-icant figures, given $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ when $R_1 = 5.5 \quad \Omega$, $R_2 = 7.42 \quad \Omega$ and $R_3 = 12.6 \Omega$.

- 12. The potential difference, V volts, available at battery terminals is given by V = E - Ir. Evaluate V when E = 5.62, I = 0.70 and R = 4.30.
- 13. The current I amperes flowing in a number of cells is given by $I = \frac{nE}{R + nr}$. Evaluate the current, correct to 3 significant figures, when n = 36. E = 2.20, R = 2.80 and r = 0.50.
- 14. Energy, E joules, is given by the formula $E = \frac{1}{2}LI^2$. Evaluate the energy when L = 5.5H and I = 1.2 A.
- 15. The current I amperes in an a.c. circuit is given by $I = \frac{V}{\sqrt{(R^2 + X^2)}}$. Evaluate the current, correct to 4 significant figures, when $V = 250 V, R = 11.0 \Omega$ and $X = 16.2 \Omega$.

Fractions 1.2

An example of a fraction is $\frac{2}{3}$ where the top line, i.e. the 2, is referred to as the **numerator** and the bottom line, i.e. the 3, is referred to as the **denominator**.

A proper fraction is one where the numerator is smaller than the denominator, examples being $\frac{2}{3}$, $\frac{1}{2}$, $\frac{3}{8}$, $\frac{5}{16}$, and so on.

An improper fraction is one where the denominator is smaller than the numerator, examples being $\frac{3}{2}, \frac{2}{1}, \frac{8}{3}, \frac{16}{5}$, and so on.

Addition of fractions is demonstrated in the following worked problems.

Problem 8. Evaluate A, given
$$A = \frac{1}{2} + \frac{1}{3}$$

The lowest common denominator of the two denominators 2 and 3 is 6, i.e. 6 is the lowest number that both 2 and 3 will divide into.

Then $\frac{1}{2} = \frac{3}{6}$ and $\frac{1}{3} = \frac{2}{6}$ i.e. both $\frac{1}{2}$ and $\frac{1}{3}$ have the common denominator, namely 6.

The two fractions can therefore be added as:

$$\mathbf{A} = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{3+2}{6} = \frac{5}{6}$$

Problem 9. Evaluate A, given
$$A = \frac{2}{3} + \frac{3}{4}$$

A common denominator can be obtained by multiplying the two denominators together, i.e. the common denominator is $3 \times 4 = 12$.

The two fractions can now be made equivalent, i.e. $\frac{2}{3} = \frac{8}{12}$ and $\frac{3}{4} = \frac{9}{12}$

so that they can be easily added together, as follows: 2 3 8 9 8+9 17

A =
$$\frac{2}{3} + \frac{3}{4} = \frac{3}{12} + \frac{3}{12} = \frac{3}{12} = \frac{3}{12} = \frac{17}{12}$$

i.e. A = $\frac{2}{3} + \frac{3}{4} = 1\frac{5}{12}$

Problem 10. Evaluate A, given A =
$$\frac{1}{6} + \frac{2}{7} + \frac{3}{2}$$

A suitable common denominator can be obtained by multiplying $6 \times 7 = 42$, and all three denominators divide exactly into 42.

Thus, $\frac{1}{6} = \frac{7}{42}, \frac{2}{7} = \frac{12}{42}$ and $\frac{3}{2} = \frac{63}{42}$

Hence,

$$= \frac{7+12+63}{42} = \frac{82}{42} = \frac{41}{21}$$

i.e. $\mathbf{A} = \frac{1}{6} + \frac{2}{7} + \frac{3}{2} = 1\frac{20}{21}$

 $A = \frac{1}{6} + \frac{2}{7} + \frac{3}{2} = \frac{7}{42} + \frac{12}{42} + \frac{63}{42}$

Problem 11. Determine A as a single fraction, given A = $\frac{1}{x} + \frac{2}{y}$

A common denominator can be obtained by multiplying the two denominators together, i.e. xy

Thus,
$$\frac{1}{x} = \frac{y}{xy}$$
 and $\frac{2}{y} = \frac{2x}{xy}$

x xy y

Hence, $A = \frac{1}{x} + \frac{2}{y} = \frac{y}{xy} + \frac{2x}{xy}$ i.e. $A = \frac{y + 2x}{xy}$

Note that addition, subtraction, multiplication and division of fractions may be determined using a **calculator** (for example, the CASIO fx-991ES PLUS).

Locate the \square and \square functions on your calculator (the latter function is a shift function found above the \square function) and then check the following worked problems.

Problem 12. Evaluate
$$\frac{1}{4} + \frac{2}{3}$$
 using a calculator

- (i) Press $\frac{\Box}{\Box}$ function
- (ii) Type in 1
- (iii) Press \downarrow on the cursor key and type in 4
- (iv) $\frac{1}{4}$ appears on the screen
- (v) Press \rightarrow on the cursor key and type in +

(vi) Press
$$\frac{\Box}{\Box}$$
 function

- (vii) Type in 2
- (viii) Press \downarrow on the cursor key and type in 3
- (ix) Press \rightarrow on the cursor key
- (x) Press = and the answer $\frac{11}{12}$ appears
- (xi) Press S \Leftrightarrow D function and the fraction changes to a decimal 0.9166666....

Thus, $\frac{1}{4} + \frac{2}{3} = \frac{11}{12} = 0.9167$ as a decimal, correct to 4 decimal places

It is also possible to deal with **mixed numbers** on the calculator. Press Shift then the \Box function and \Box appears

Problem 13. Evaluate $5\frac{1}{5} - 3\frac{3}{4}$ using a calculator

- (i) Press Shift then the \square function and \square \square appears on the screen
- (ii) Type in 5 then \rightarrow on the cursor key
- (iii) Type in 1 and \downarrow on the cursor key
- (iv) Type in 5 and $5\frac{1}{5}$ appears on the screen
- (v) Press \rightarrow on the cursor key
- (vi) Type in and then press Shift then the $\frac{1}{\Box}$ function and $5\frac{1}{5} \Box\frac{\Box}{\Box}$ appears on the screen
- (vii) Type in 3 then \rightarrow on the cursor key
- (viii) Type in 3 and \downarrow on the cursor key
- (ix) Type in 4 and $5\frac{1}{5} 3\frac{3}{4}$ appears on the screen
- (x) Press = and the answer $\frac{29}{20}$ appears

8 Electrical and Electronic Principles and Technology

- (xi) Press shift and then S \Leftrightarrow D function and $1\frac{9}{20}$
- (xii) Press S \Leftrightarrow D function and the fraction changes to a decimal 1.45

Thus,
$$5\frac{1}{5} - 3\frac{3}{4} = \frac{29}{20} = 1\frac{9}{20} = 1.45$$
 as a decimal

Now try the following Practice Exercise

Practice Exercise 3 Fractions (Answers on page 504)

In problems 1 to 3, evaluate the given fractions.

1.
$$\frac{1}{3} + \frac{1}{4}$$
 2. $\frac{1}{5} + \frac{1}{4}$ 3. $\frac{1}{6} + \frac{1}{2} - \frac{1}{5}$

In problems 4 and 5, use a calculator to evaluate the given expressions.

- 4. $\frac{1}{3} \frac{3}{4} \times \frac{8}{21}$ 5. $\frac{3}{4} \times \frac{4}{5} \frac{2}{3} \div \frac{4}{9}$
- 6. Evaluate $\frac{3}{8} + \frac{5}{6} \frac{1}{2}$ as a decimal, correct to 4 decimal places.
- 7. Evaluate $8\frac{8}{9} \div 2\frac{2}{3}$ as a mixed number.
- 8. Evaluate $3\frac{1}{5} \times 1\frac{1}{3} 1\frac{7}{10}$ as a decimal, correct to 3 decimal places.
- 9. Determine $\frac{2}{x} + \frac{3}{y}$ as a single fraction.

1.3 Percentages

Percentages are used to give a common standard. The use of percentages is very common in many aspects of commercial life, as well as in engineering. Interest rates, sale reductions, pay rises, exams and VAT are all examples where percentages are used.

Percentages are fractions having 100 as their denominator.

For example, the fraction $\frac{40}{100}$ is written as 40% and is read as 'forty per cent'.

The easiest way to understand percentages is to go through some worked examples.

Problem 14. Express 0.275 as a percentage

 $0.275 = 0.275 \times 100\% = 27.5\%$

Problem 15. Express 17.5% as a decimal number

$$17.5\% = \frac{17.5}{100} = 0.175$$

Problem 16. Express $\frac{5}{8}$ as a percentage

$$\frac{5}{8} = \frac{5}{8} \times 100\% = \frac{500}{8}\% = 62.5\%$$

Problem 17. In two successive tests a student gains marks of 57/79 and 49/67. Is the second mark better or worse than the first?

$$57/79 = \frac{57}{79} = \frac{57}{79} \times 100\% = \frac{5700}{79}\% = 72.15\%$$

correct to 2 decimal places.

$$49/67 = \frac{49}{67} = \frac{49}{67} \times 100\% = \frac{4900}{6}\% = 73.13\%$$

correct to 2 decimal places.

Hence, the second test mark is marginally better than the first test.

This question demonstrates how much easier it is to compare two fractions when they are expressed as percentages.

$$75\% = \frac{75}{100} = \frac{3}{4}$$

The fraction $\frac{75}{100}$ is reduced to its simplest form by cancelling, i.e. dividing numerator and denominator by 25.

Problem 19. Express 37.5% as a fraction $37.5\% = \frac{37.5}{100}$ $= \frac{375}{1000}$ by multiplying numerator and denominator by 10 $= \frac{15}{40}$ by dividing numerator and

$$40^{-9}$$
denominator by 25
$$=\frac{3}{8}$$
 by dividing numerator and
denominator by 5

Problem 20. Find 27% of £65

27% of £65 =
$$\frac{27}{100} \times 65 =$$
£17.55 by calculator

Problem 21. A 160 GB iPod is advertised as costing \pounds 190 excluding VAT. If VAT is added at 20%, what will be the total cost of the iPod?

VAT = 20% of £190 =
$$\frac{20}{100} \times 190 =$$
 £38
Total cost of iPod = £190 + £38 = **£228**

A quicker method to determine the total cost is: $1.20 \times \pounds 190 = \pounds 228$

Problem 22. Express 23 cm as a percentage of 72 cm, correct to the nearest 1%

23 cm as a percentage of 72 cm = $\frac{23}{72} \times 100\%$ = 31.94444.....% = **32%** correct to the nearest 1%

Problem 23. A box of screws increases in price from £45 to £52. Calculate the percentage change in cost, correct to 3 significant figures.

% change =
$$\frac{\text{new value - original value}}{\text{original value}} \times 100\%$$

= $\frac{52 - 45}{45} \times 100\% = \frac{7}{45} \times 100$

= 15.6% = percentage change in cost

Problem 24. A drilling speed should be set to 400 rev/min. The nearest speed available on the machine is 412 rev/min. Calculate the percentage over-speed.

% over-speed = $\frac{\text{available speed} - \text{correct speed}}{\text{correct speed}} \times 100\%$ = $\frac{412 - 400}{400} \times 100\% = \frac{12}{400} \times 100\% = 3\%$ Now try the following Practice Exercise

Practice Exercise 4 Percentages (Answers on page 504)

In problems 1 and 2, express the given numbers as percentages.

- 1. 0.057 2. 0.374
- 3. Express 20% as a decimal number
- 4. Express $\frac{11}{16}$ as a percentage
- 5. Express $\frac{5}{13}$ as a percentage, correct to 3 decimal places
- 6. Place the following in order of size, the smallest first, expressing each as percentages, correct to 1 decimal place: (a) $\frac{12}{21}$ (b) $\frac{9}{17}$ (c) $\frac{5}{9}$ (d) $\frac{6}{11}$
- 7. Express 65% as a fraction in its simplest form
- 8. Calculate 43.6% of 50 kg
- 9. Determine 36% of 27 m
- 10. Calculate correct to 4 significant figures:
 (a) 18% of 2758 tonnes
 (b) 47% of 18.42 grams
 (c) 147% of 14.1 seconds
- 11. Express: (a) 140 kg as a percentage of 1 t
 (b) 47 s as a percentage of 5 min
 (c) 13.4 cm as a percentage of 2.5 m
- 12. A computer is advertised on the internet at £520, exclusive of VAT. If VAT is payable at 20%, what is the total cost of the computer?
- 13. Express 325 mm as a percentage of 867 mm, correct to 2 decimal places.
- 14. When signing a new contract, a Premiership footballer's pay increases from £15,500 to £21,500 per week. Calculate the percentage pay increase, correct 3 significant figures.
- 15. A metal rod 1.80 m long is heated and its length expands by 48.6 mm. Calculate the percentage increase in length.